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Abstract: Kidney function parameters including estimated glomerular filtration rate (eGFR)
and urine albumin excretion are commonly used to diagnose chronic kidney disease
(CKD). However, these parameters are relatively insensitive, limiting their utility for
screening and early detection of kidney disease. Studies have suggested that urinary
proteomic profiles differ by eGFR stage, offering potential insights into kidney disease
pathogenesis alongside opportunities to increase the sensitivity of current testing strategies.
In this study, we characterized and compared the urinary proteome across different eGFR
stages in a Black African cohort from rural Mpumalanga Province, South Africa. We
stratified 81 urine samples by eGFR stage (mL/min/1.73 m2): Stage G1 (eGFR ≥ 90;
n = 36), Stage G2 (eGFR 60–89; n = 35), and Stage G3–G5 (eGFR < 60; n = 10). Urine
proteomic analysis was performed using an Evosep One liquid chromatography system
coupled to a Sciex 5600 TripleTOF in data-independent acquisition mode. Nonparametric
multivariate analysis and receiver operating characteristic (ROC) curves were used to
assess the performance of differentially abundant proteins (DAPs). Pathway analysis was
performed on DAPs. Creatinine-based eGFR was calculated using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation. In this study, thirty-eight urinary
proteins were differentially abundant for eGFR Stages 3–5 when compared to Stages G1
(AUC = 0.95; CI: 0.86–1) and G2 (AUC = 0.84; CI: 0.64–0.98). Notably, only six urinary
proteins (Cystatin M (CST6), glutathione hydrolase 6 (GGT6), sushi domain containing 2
(SUSD2), insulin-like growth factor binding protein 6 (IGFBP6), heat shock protein 90 beta
family member 1 (HSP90B1), and mannosidase alpha class 1A member 1 (MAN1A1)) were
differentially abundant when comparing Stage G1 and Stage G2 with a modest AUC = 0.81
(CI: 0.67–0.92). Pathway analysis indicated that DAPs were associated with haemostasis
and fibrin clot formation. In a rural cohort from South Africa, the urinary proteome differed
by eGFR stage, and we identified six differentially abundant proteins which, in combination,
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could help to differentiate earlier eGFR stages with higher predictive accuracy than the
currently available tests.

Keywords: chronic kidney disease; estimated glomerular filtration; albuminuria; urinary
proteomics; biomarker

1. Introduction
Chronic kidney disease (CKD) is defined as the presence of kidney damage or de-

creased kidney function for at least three months, which is detrimental to health [1]. Kidney
damage can be established by biopsy, imaging, or laboratory markers such as the presence of
haematuria, abnormalities in urine sediments, and albuminuria (urine albumin: creatinine
ratio (uACR) ≥ 3 mg/mmol). Decreased kidney function refers to a reduced glomerular fil-
tration rate (GFR), which is frequently estimated from serum creatinine [1]. As per the 2024
Kidney Disease Improvement Global Outcomes (KDIGO), using eGFR (mL/min/1.73 m2),
CKD is classified into five stages (G1–G5) which are G1 (≥90), G2 (60–89), G3a (45–59),
G3b (30–44), G4 (15–29), and G5 (<15) [1]. Using albuminuria, measured as the urine
albumin excretion rate (uACR measured as mg/mmol), CKD is categorized into three
groups: A1 (<3), A2 (3–30), and A3 (≥30) [1]. Despite their high utilization as markers to
diagnose and monitor CKD, both uACR and eGFR have their limitations. Unfortunately,
creatinine-based eGFR is confounded by factors such as muscle mass, age, and sex, with
high intra-individual and inter-individual variation in serum creatinine [2]. Additionally,
creatinine-based eGFR has poor predictive ability for the risk of CKD progression and
adverse all-cause and cardiovascular outcomes [3,4].

When looking at alternative biomarkers, the urinary proteome seems to differ by eGFR
stage in terms of the differential abundance and number of proteins detected [5,6]. In a
study comparing Stage G1–3 CKD patients to healthy controls in an Asian population, more
urinary proteins were expressed among the healthy controls compared to those with CKD,
with lower urinary protein expression occurring in those with advanced stages of CKD,
and urinary proteins such as beta-2 microglobulin, Fetuin A, vitamin-D binding globulin,
and alpha-1 microglobulin/bikunin precursor were linked to stages with poorer kidney
function [5]. A comparison of early-stage and late-stage CKD revealed 929 significantly
differentially expressed peptides, the majority of which were of collagen origin and down-
regulated [6]. When these peptides were combined as a CKD classifier, the scores from this
classifier correlated well with eGFR stages [7]. When comparing different CKD stages (CKD
stages 1, 2, and 5) to healthy controls, urine proteomics profiling differentiated early CKD
stages from both advanced CKD stages and the control group. Additionally, the number of
proteins and their patterns varied with increasing CKD severity [8]. At the protein level,
cathepsin D, metalloproteinase 7, and insulin-like growth factor binding proteins were
associated with decreased eGFR [9]. In severe stages of CKD (<29 mL/min/1.73 m2), blood-
derived peptides such as alpha-1 antitrypsin, vitamin-D binding proteins, transthyretin,
and serum amyloid A-1 were found to be highly abundant in the urinary proteome, while
in early CKD stages, analysis showed modification of collagen fragments, which suggests
changes in the turnover of the extracellular matrix (ECM), the principal structure of fibrotic
tissue [10]. Furthermore, increased abundance was observed in fibronectin, a component
of the ECM, as GFR declined [11]—suggesting a correlation between certain proteins and
eGFR stages. However, most of the existing studies either compare advanced CKD with
healthy controls or are limited by small sample sizes (with samples of five and nine pa-
tients) of those with early CKD [8,12,13]. Urinary proteomic profiling can help identify
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biomarkers of kidney dysfunction at the earliest stage of CKD, even before traditional
markers such eGFR and albuminuria show noticeable changes. This enables timely inter-
vention and better management of the disease [14]. Therefore, in this study, we aimed to
generate and compare urinary proteome profiles stratified by eGFR stages in a Black South
African population.

2. Results
2.1. Demographic and Clinical Characteristics

The demographic and clinical characteristics of the study participants are summarised
in Table 1. Median age, sex, and BMI distributions were not statistically different between
the groups. As expected, there was a progressive increase in uACR (p < 0.001) measure-
ments with a decline in kidney function across the eGFR stages. Participants with Stage
G3–G5 were more likely to have hypertension (p = 0.023) and diabetes (p = 0.004).

Table 1. Demographic and clinical characteristics of study participants.

Variable Total Stage G1
N = 36

Stage G2
N = 35

Stage G3–G5
N = 10 p-Value

Age, years 52 (36–63) 50 (35–62) 50 (35–61) 63 (48–68) 0.167
Sex, female 45/81 (56) 19/36 (53) 19/35 (54) 7/10 (70) 0.671
BMI, kg/m2 26 (22–29) 24 (21–27) 27 (23–31) 26 (22–27) 0.195
Serum creatinine (µmol/L) 73 (60–90) 56 (50–69) 79 (72–99) 119 (101–140) <0.001 *†#

eGFR (mL/min/1.73 m2) 88 (76–106) 107 (100–117) 84 (75–88) 52 (44–56) <0.001 *†#

uACR (mg/mmol) 0.4 (0.2–2.3) 0.4 (0.2–1.1) 0.3 (0.2–0.8) 6.8 (2.3–50) <0.001 *†#

SBP (mmHg) 131 (121–140) 124 (120–142) 131 (121–138) 137 (128–156) 0.242
DBP (mmHg) 80 (73–86) 79 (62–88) 81 (71–87) 80 (68–89) 0.779
Participants with hypertension 16/72 (22) 4/32 (13) 7/31 (23) 5/9 (56) 0.023 †

Participants with diabetes 19/80 (2.7) 3/36 (8) 11/34 (33) 5/10 (50) 0.004 *†

Participants with HIV infection 23/81 (28.4) 12/36 (33.3) 7/35 (20) 4/10 (40) 0.360
BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, eGFR: estimated glomeru-
lar filtration rate, uACR: urine albumin:creatinine ratio. Continuous variables are expressed as medi-
ans (25th and 75th interquartile range), and categorical variables are expressed as proportions in percent
(%). Stage G1 (eGFR ≥ 90 mL/min/1.73 m2), Stage G2 (eGFR 60–89 mL/min/1.73 m2), and Stage G3–G5
(eGFR < 60 mL/min/1.73 m2). * Significant differences between Stage G2 and Stage G3–G5. † Significant differ-
ences between Stage G1 and Stage G3–G5. # Significant differences between Stage G1 and Stage G2.

2.2. Performance of Study-Specific Suitability–Quality Control

Supplementary Figure S1 displays the performance of study-specific process control
(CR) with a pooled urine sample from multiple patients, which was used to monitor the
consistency of the sample preparation. As well as the system suitability controls (SSC),
commercially obtained and pre-digested HeLa lysate was used to monitor the stability of the
liquid chromatograph mass spectrometry (LCMS) system. The coefficient of variation (CV)
at the protein group level was 15% for SSC and 14% for CR over 5 days of analysis. The CV
at the peptide level was 18.2% and 17.5% for SSC and CR, respectively. Counts for protein,
peptide, and precursors remained consistent throughout the data acquisition process
(Figure S1A–F) and within the acceptable level of ≤20% that is currently recommended for
a proteomics workflow [15].

2.3. Multivariate Analysis of Differential Abundant Proteins (DAPs)

A total of 1469 proteins were identified in this cohort, and 38 urine proteins were
found to be significantly different across the three stages using the Kruskal–Wallis H test
(Figure 1 and Supplementary Table S1). Pairwise comparisons using Dunn’s test with a
Bonferroni adjustment indicated that Stage G3–G5 scores were significantly different from
those of Stage G1 and Stage G2 for all 38 differentially abundant proteins (Supplementary
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Table S2). Six urine proteins (CST6, GGT6, SUSD2, IGFBP6, HSP90B1, and MAN1A1)
showed statistically significant differences between Stage G1 and Stage G2 (Figure 2 and
Supplementary Table S2). To assess the discriminatory power of the selected proteins across
all three stages, a multivariate approach was used. An unsupervised analysis using PCA
did not show a clear separation between the stages (Figure 3 and Supplementary Figure S2).
The score plots overlapped, with all groups showing great dispersion, but Stage G3–G5
showed minimal dispersion.
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Figure 1. Box and whisker plots of the proteins that were significantly different between stages after 
a Kruskal–Wallis test followed by a Dunn’s test showing the urine proteins expressed in a logarith-
mic scale (log10) at Stage G1 (eGFR ≥ 90 mL/min/1.73 m2), Stage G2 (eGFR 60–89 mL/min/1.73 m2), 
and Stage G3–G5 (eGFR < 60 mL/min/1.73 m2). Beta-2 microglobulin (B2M), Carbonic anhydrase 1 
(CA1), Cystatin M (CST6), Desmocollin-2 (DSC2), Fatty acid-binding protein, liver (FABP1), FAMC 
metabolism regulation signalling molecule C (FAM3C), Gelsolin (GSN), Hemopexin (HPX), Insulin-
like growth factor binding protein 6 (IGFBP6), Immunoglobulin heavy constant gamma 3 (IGHG3), 
Immunoglobulin kappa variable 3-20 (IGK3-20), Immunoglobulin lambda constant 3 (IGLC3), Im-
munoglobulin kappa variable 3D-15 (IGKV3D-15), Immunoglobulin lambda variable 1-47 (IGLV1-
47), Immunoglobulin lambda variable 7-43 (IGLV7-43), Immunoglobulin kappa light chain 
(P0DOX7), Peptidase inhibitor 16 (PI16), Antithrombin III (SERPINC1), Superoxide dismutase 
(SOD1), Selotransferrin (TRFE), Immunoglobulin lambda-like polypeptide 1 (IGLL1), Immuno-
globulin lambda-1 light chain (P0DOX8), Beta-1,4-glucuronyltransferase 1 (B4GAT1), Neural cell 
adhesion molecule L1-like protein (CHL1), Pro-epidermal growth factor (EGF), Heat shock protein 
90 beta family member 1 (HSP90B1), IST1 homolog (IST1), mannosidase alpha class 1A member 1 
(MAN1A1), Multimerin-2 (MMRN2), Osteomodulin (OMD), Phosphatidylcholine-sterol acyltrans-
ferase (LCAT), Plasma serine protease inhibitor (SERPINA5), Sushi domain-containing protein 2 
(SUSD2), Glutathione hydrolase 6 (GGT6), Vacuolar protein sorting-associated protein VTA1 hom-
olog (VTA1), and Heat shock protein HSP 90-beta (HSP90A1). Asterisks indicate statistically signif-
icant differences between the stages, where **** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05, 
and ns denotes p > 0.05. The boxes denote interquartile ranges, and the bottom and top boundaries 
of the boxes are the 25th and 75th percentiles, respectively. The lower and upper whiskers 

Figure 1. Box and whisker plots of the proteins that were significantly different between stages after a
Kruskal–Wallis test followed by a Dunn’s test showing the urine proteins expressed in a logarithmic
scale (log10) at Stage G1 (eGFR ≥ 90 mL/min/1.73 m2), Stage G2 (eGFR 60–89 mL/min/1.73 m2),
and Stage G3–G5 (eGFR < 60 mL/min/1.73 m2). Beta-2 microglobulin (B2M), Carbonic anhydrase 1
(CA1), Cystatin M (CST6), Desmocollin-2 (DSC2), Fatty acid-binding protein, liver (FABP1), FAMC
metabolism regulation signalling molecule C (FAM3C), Gelsolin (GSN), Hemopexin (HPX), Insulin-
like growth factor binding protein 6 (IGFBP6), Immunoglobulin heavy constant gamma 3 (IGHG3),
Immunoglobulin kappa variable 3-20 (IGK3-20), Immunoglobulin lambda constant 3 (IGLC3), Im-
munoglobulin kappa variable 3D-15 (IGKV3D-15), Immunoglobulin lambda variable 1-47 (IGLV1-47),
Immunoglobulin lambda variable 7-43 (IGLV7-43), Immunoglobulin kappa light chain (P0DOX7),
Peptidase inhibitor 16 (PI16), Antithrombin III (SERPINC1), Superoxide dismutase (SOD1), Selotrans-
ferrin (TRFE), Immunoglobulin lambda-like polypeptide 1 (IGLL1), Immunoglobulin lambda-1 light
chain (P0DOX8), Beta-1,4-glucuronyltransferase 1 (B4GAT1), Neural cell adhesion molecule L1-like
protein (CHL1), Pro-epidermal growth factor (EGF), Heat shock protein 90 beta family member 1
(HSP90B1), IST1 homolog (IST1), mannosidase alpha class 1A member 1 (MAN1A1), Multimerin-2
(MMRN2), Osteomodulin (OMD), Phosphatidylcholine-sterol acyltransferase (LCAT), Plasma serine
protease inhibitor (SERPINA5), Sushi domain-containing protein 2 (SUSD2), Glutathione hydrolase 6
(GGT6), Vacuolar protein sorting-associated protein VTA1 homolog (VTA1), and Heat shock protein
HSP 90-beta (HSP90A1). Asterisks indicate statistically significant differences between the stages,
where **** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05, and ns denotes p > 0.05. The boxes
denote interquartile ranges, and the bottom and top boundaries of the boxes are the 25th and 75th
percentiles, respectively. The lower and upper whiskers correspond to the 5th and 95th percentiles,
respectively. A horizontal line inside a box denotes the median.
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Figure 2. Box and whisker plots of the significantly different urinary protein expression be-
tween stages after a Kruskal–Wallis test followed by a Dunn’s test showing the urine proteins
expressed in a logarithmic scale (log10) at Stage G1 (eGFR ≥ 90 mL/min/1.73 m2), Stage G2
(eGFR 60–89 mL/min/1.73 m2), and Stage G3–G5 (eGFR < 60 mL/min/1.73 m2). CST6—Cystatin M
(CST6), GGT6—glutathione hydrolase 6, SUSD2—sushi domain containing 2, IGFBP6—Insulin-like
growth factor binding protein 6, HSP90B1—heat shock protein 90 beta family member 1, MAN1A1—
mannosidase alpha class 1A member 1. Asterisks indicate statistically significant differences between
the stages, where **** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05 and ns denotes p > 0.05.
The boxes denote interquartile ranges, and the bottom and top boundaries of the boxes are the 25th
and 75th percentiles, respectively. The lower and upper whiskers correspond to the 5th and 95th
percentiles, respectively. A horizontal line inside a box denotes the median.

Spearman’s correlations between serum creatinine concentrations, eGFR, and uACR
with the 38 differentially abundant proteins are shown in Supplementary Table S3. Serum
creatinine concentrations had a moderate positive correlation with CST6 (r = 0.43, p < 0.001)
and correlated negatively with HSP90B1 (r = −0.37; p < 0.001), MAN1A1 (r = −0.30,
p < 0.001), SUSD2 (r = −0.44, p < 0.001), and GGT (r = −0.39, p < 0.001) in all stages.
There was a weak negative correlation between IGFBP6 and serum creatinine, and this
correlation was not statistically significant (r = −0.026, p = 0.819). Additionally, negative
correlations were observed between uACR and HSP90B1 (r = −0.31; p = 0.003), as well
as MAN1A1 (r = −0.27, p = 0.016). No significant correlation was found between uACR
and CST6 (r = 0.11, p = 0.332), SUSD2 (r = −0.18, p = 0.096), GGT (r = −0.18, p = 0.101),
or IGFBP6 (r = 0.17, p = 0.141). Significant correlations were observed between eGFR and
MAN1A1 (r = 0.37, p < 0.001), SUSD2 (r = 0.53, p < 0.001), CST6 (r = −0.33, p = 0.003),
GGT (r = 0.46, p < 0.001), and HSP90B1 (r = 0.43, p < 0.001). No significant correlation was
observed between IGFBP6 and eGFR (r = 0.05, p = 0.663). Overall, HSP90B1 was most
consistently correlated with both eGFR (positively) and uACR (negatively).
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Figure 3. Principal component analysis (PCA) plots obtained for the 38 differential urine proteins
across three stages: Stage G1 (eGFR ≥ 90 mL/min/1.73 m2), Stage G2 (eGFR 60–89 mL/min/1.73 m2),
and Stage G3–G5 (eGFR <60 mL/min/1.73 m2).

To evaluate the diagnostic potential of the 38 differentially abundant proteins identified
in this study, ROC curves were generated based on a linear support vector machine logistic
algorithm including the predicted class probabilities with cross-validation. One hundred
cross-validations were performed (Figures 4 and 5) and their results were averaged to
generate the plot. Each sample was predicted from the one hundred cross-validations. The
ROC curve was further generated to evaluate group intercomparison. The area under curve
(AUC) values ranged from 0.81 to 0.95, confirming a good fit of the model. The highest
AUC (0.95, CI: 0.87–1) was achieved when comparing Stage G1 with Stage G3–G5. The
predicted class probabilities for each sample are shown in Figures 4 and 5. There was no
absolute separation, but most of the samples could be distinguished correctly, especially
between Stage G1 and Stage G3–G5, suggesting the misclassification of some samples in
this cohort. The top urine proteins contributing to the prediction model were ranked by
mean of importance (Figures 4B,F and 5B). The discriminating ability between Stage G1
and Stage G2 was modest (AUC = 0.81; 95% CI: 0.67–0.92).

2.4. Pathway and Network Analysis of Differentially Abundant Proteins

The functional enrichment analysis and gene ontology of DAPs are shown in Figure 6
and Table S4. To identify the functional pathways linked to our proteomic signatures and
potentially associated with CKD progression, we conducted pathway enrichment analysis
through the Enrichr database. The top five significantly (using adjusted p value < 0.05)
enriched terms were the following: haemostasis (SERPINA5, SOD1, IGLL1, FAM3C, EGF,
and SERPINC1) as the highest mechanism in the pathogenesis of CKD, the intrinsic pathway
of fibrin clot formation (SERPINA5 and SERPINC1), the common pathway of fibrin clot
formation (SERPINA5 and SERPINC1), keratin sulphate biosynthesis (B4GAT1 and OMD),
and regulation of insulin growth factor 1 (IGF-1) transport and uptake by insulin growth
factor binding proteins (HSP90B1, IGFBP6, and SERPINC1). Furthermore, IGHG3, B2M,
and SOD1 were linked to the retina homeostasis (GO:0001895) biological process (Table 2).
The ESCRT III Complex Disassembly (GO:1904903) biological process was associated with
IST1 and VTA1 proteins, while the molecular function of DAPs was predominantly linked
to inhibition of the endopeptidases.
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Figure 4. Receiver operating characteristics (ROC) curves for different stages of selected differential
abundant proteins (A,D). The most discriminating urine proteins are shown in descending order of
their coefficient scores based on the mean of the importance between groups (B,F). The coloured boxes
indicate whether the protein level is increased (red) or decreased (blue). Cross validation prediction
(C,E) of 6 selected urine proteins. A purple shaded area in an ROC indicates the 95% confidence
interval. Stage G1 (eGFR ≥ 90 mL/min/1.73 m2), Stage G2 (eGFR 60–89 mL/min/1.73 m2), and
Stage G3–G5 (eGFR < 60 mL/min/1.73 m2).
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Figure 5. Receiver operating characteristic curves comparing differentially abundant proteins between
Stage G1 and Stage G2 (A). The most discriminating urine proteins are shown in descending order of
their coefficient scores based on the mean of the importance between groups (B). The coloured boxes
indicate whether the protein level is increased (red) or decreased (blue). Cross validation prediction
of 6 selected urine proteins (C). A purple shaded area indicates the 95% confidence interval. Stage G1
(eGFR ≥ 90 mL/min/1.73 m2), Stage G2 (eGFR 60–89 mL/min/1.73 m2), and Stage G3–G5 (eGFR <
60 mL/min/1.73 m2).
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Table 2. GO biological processes, molecular functions, and pathway analysis of candidate markers.

Name Candidate Genes Adjusted p-Value

Biological GO

Retina Homeostasis (GO:0001895) IGHG3; B2M; SOD1 0.0176

ESCRT III Complex Disassembly
(GO:1904903) IST1; VTA1 0.0176

ESCRT Complex Disassembly
(GO:1904896) IST1; VTA1 0.0176

Cellular GO

Intracellular Organelle Lumen
(GO:0070013)

HPX; HSP90AB1; GSN;
SERPINC1; OMD; SERPINI1;
B2M; HSP90B1; SOD1

0.0010

Secretory Granule Lumen (GO:0034774) HSP90AB1; GSN; EGF; IST1;
FAM3C; B2M 0.0010

Collagen-Containing Extracellular
Matrix (GO:0062023)

HPX; SERPINC1; MMRN2;
SERPINA5; HSP90B1 0.0140

Endocytic Vesicle Lumen (GO:0071682) HPX; HSP90B1 0.0210

Molecular GO

Serine-Type Endopeptidase Inhibitor
Activity (GO:0004867)

SERPINC1; SERPINI1;
SERPINA5 0.0097

MHC Class II Protein Complex Binding
(GO:0023026) HSP90AB1; B2M 0.0291

Endopeptidase Inhibitor Activity
(GO:0004866)

SERPINC1; SERPINI1;
SERPINA5 0.0291

3. Discussion
Using a data-independent acquisition (DIA) approach, the present study profiled

urinary proteins to provide clues not only about pathophysiological mechanisms, but also
potential proteins related to kidney function according to eGFR stage.

To identify possible markers that differ according to eGFR stage„ we first explored
differentially abundant proteins (DAPs) between Stage G3–G5 and the earlier stages, G1
and G2. Our results showed that DAPs changed depending on eGFR stage. Thirty-eight
proteins were differentially abundant between Stage G3–G5 and the other groups. Among
these, proteins such as SERPINA5, beta-2 microglobulin, and osteomodulin (Figure 1) were
found to be differentially abundant in this study and have been extensively studied and
linked to adverse outcomes in CKD [12,16,17]. However, to detect changes in the early
stages of CKD, we focused on DAPs that were significantly different between participants
in Stage G1 and Stage G2. Six proteins were identified as such: CST6, IGFBP6, MAN1A1,
SUSD2, HSP90B1, and GGT6.

For stage G3–G5„ CST6 levels were significantly higher than in the Stage G1 and
Stage G2, and correlated negatively with eGFR, suggesting that as kidney function declines
(indicated by increased creatinine), CST6 levels increase. This relationship could indicate
that CST6 might be involved in kidney injury or dysfunction, potentially serving as a
marker for kidney damage or impairment. CST6, like Cystatin-C, belongs to the type 2
cystatin superfamily and is an extracellular polypeptide inhibitor of the cysteine proteases
that prevent extra proteolysis. Proteases such as Cathepsins B, S, and L, as well as Legumain,
are involved in kidney matrix remodelling and are inhibited by CST6 in humans, which
may result in dysregulation of either their expression or activity [18–20]. These proteases
are involved in the regulation of extracellular matrix homeostasis, apoptosis, glomerular
permeability, endothelial function, and inflammation. Dysregulation of these proteases
has been associated with the onset and progression of CKD [21]. Despite the link between
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CST6 and protease functioning, the exact mechanism that affects kidney disease has not
been described.

We observed higher IGFBP6 protein levels in the Stage G3–G5. This is supported by
several studies that have shown that IGFBP6 levels are frequently upregulated in CKD.
The abundance of IGFBP6 in urine gradually increases with declining kidney function [22].
The pathophysiological role of IGFBP6 in CKD has not yet been established. The associa-
tion between IGFBP6 and CKD is believed to be involved in kidney fibrosis through the
regulation of apoptosis in kidney cells [23].

In this study, MAN1A1 and SUSD2 gradually decreased with decreasing kidney func-
tion, and their levels became lower with the increasing severity of kidney non-function,
suggesting that these may play a role in kidney function or repair. Their reduced levels
in patients with high uACR could reflect deteriorating kidney function. SUSD2 is a type
I membrane protein containing domains of adhesion molecules [24]. The highest levels
of SUSD2 are found in normal lung tissue, followed by kidney tissue, but no known
function has been described in the kidneys. Few studies have reported an association
between SUSD2 and different malignancies such as lung cancer or breast and renal cell
carcinoma [25,26], where it acts as a tumour suppressor gene, with low levels being as-
sociated with aggressiveness [27]. In the kidney, it is one of the urine proteins that are
significantly decreased in acute kidney rejection after transplantation compared to con-
trols [28], suggesting that low urine levels may be related to CKD. It should be noted that
SUSD2 dysregulation is not entirely specific to kidney disease—abnormal levels have been
identified in malignancies as well [25]. While no other studies have linked MAN1A1 to
CKD, in knockout mice the MANA1B gene, which is closely related to MAN1A1, has
shown an increased severity of acute and chronic kidney disease [29].

Data on the role of HSP90B1 are scarce, and its role in CKD is not fully understood.
However, it is believed to be involved in cell survival and to act as a protein chaper-
one involved in protein folding and stabilisation [30]. Furthermore, it is involved in the
maintenance of normal kidney blood flow and affects GFR by regulating the synthesis
of nitric oxide dependent on endothelial NO-synthase [31]. In hypoxic conditions, it has
important stress response functions in wound repair and healing [32]. HSP90B1 has also
been found to mediate communication between B-7 and LRP5/β-catenin signalling in
podocyte injury [33].

Glutathione hydrolase 6 (GGT6) plays an important role in cellular detoxification
through the conjugation of glutathione to endogenous and exogenous compounds for
elimination. It is also involved in the elimination of reactive oxygen species and xenobiotics.
Therefore, dysregulation of glutathione activity is likely to affect the renal antioxidant
defence system [34]. Since CKD is a state of oxidative stress [35], it may, therefore, be
associated with a depletion of GGT6. Abnormalities in the expression of GGT6 are expected.
Generally, GGT6 is low or undetectable in its normal state. However, low urinary GGT6
may suggest a depletion of glutathione levels, reflecting impaired antioxidant capacity
and an intensified oxidative stress burden. It could also reflect the extent of fibrosis and
structural damage in the kidneys [36,37].

Gene ontology analysis confirmed the pathways associated with CKD pathogene-
sis, such as haemostasis [38]. Renal insufficiency is associated with inflammation, which
has a direct effect on haemostasis [39]. High hyperactivity of platelets has negative con-
sequences on kidney function through coagulation cascade and/or fibrinolytic system
activation [5,39–41], and these were among the highly enriched pathways in this study.
Hyperactive platelets have been associated with stimulation of the inflammatory processes
in CKD [42]. Coagulation abnormalities are the result of complex interactions between
uraemic toxins, morphological changes in the walls of blood vessels, and platelet activ-
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ity [39]. Coagulation abnormalities are associated with high thrombotic and haemorrhagic
risk in kidney disease [43]. In addition to kidney disease being an inflammatory state,
dysregulation of the coagulation system is associated with inflammatory processes [44,45].
Understanding the pathways related to CKD may enable early therapeutic intervention
and mitigate its progression.

Our study has several limitations. Firstly, the study had a limited number of patients
in the Stage G3–G5 category. In clinical practice, patients at advanced stages of CKD can
easily be identified by traditional markers; therefore, the low number of patients in this
category are unlikely to affect the findings of the study. Secondly, the study was conducted
using a single cohort; therefore, the results may not be generalisable.

4. Materials and Methods
4.1. Ethics Statement

The study was approved (clearance number: M210128) by the Faculty of Health Sci-
ences Human Research Ethics Committee (Medical) at the University of the Witwatersrand,
Johannesburg, South Africa.

4.2. Sample Selection

Samples for this sub-study were selected from the South African arm of the African
Research on Kidney (ARK) study, which aimed to determine the population prevalence
of CKD and its associated risk factors in South Africa, Malawi, and Uganda. The de-
tailed methods employed in the ARK study have previously been published [46]. The
demographic data, clinical information, and laboratory results from the ARK study were
accessed for inclusion in the current study, and data were de-identified prior to sharing.
Urine samples collected during the ARK study were used for proteomics analysis. In
this study, 81 participants were selected and categorized into three groups based on their
estimated glomerular filtration rate (eGFR, mL/min/1.73 m2): Stage G1 (n = 36), Stage G2
(n = 35), and Stage G3–G5 (n = 10). Secondly, participants were age-matched (±5 years) and
sex-matched between the groups where feasible. Additionally, we determined participants
to be Stage G3–G5 if eGFR was confirmed as <60 mL/min/1.73m2 for ≥3 months. Those
without confirmed low eGFR were not included. In the ARK study, participants were de-
fined as being hypertensive (systolic blood pressure (SBP) ≥ 140 mm Hg and/or diastolic
blood pressure (DBP) ≥ 90 mm Hg) based on the 7th Report of the Joint National Commit-
tee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [47,48].
Diabetes was defined based on a non-fasting glucose measurement ≥ 11.1 mmol/L, and
human immunodeficiency virus (HIV) status was defined as positive if a participant had
previously been tested and knew their status or they were screened and tested during
the study [48].

4.3. Clinical Laboratory Tests

Serum and urine creatinine was measured using Jaffe’s method, traceable to isotope
dilution mass spectrometry, and urine albumin was measured using immunoturbidimetry
through a Roche Cobas analyser (Roche Diagnostics, Mannheim, Germany). The estimated
glomerular filtration rate (eGFR) was calculated from serum creatinine using the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) equation from 2009, without
adjustment for African American ethnicity [49].

4.4. Urine Protein Extraction

An in-house method was used for urinary proteome preparation as previously de-
scribed [16,17]. Briefly, 1600 µL of ice-cold 80% acetone was added to 400 µL of urine.
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The samples were kept at −20 ◦C for 1hr, and then centrifuged at 12,000× g for 30 min.
The supernatant was removed, and the pellets were dried using a 70 ◦C heating block
(AccuBlock Digital dry bath, Labnet International, Inc., Edison, NJ, USA) for 1 min. The
pellets were resuspended in 100 µL of 2% sodium dodecyl sulfate (SDS) and sonicated for
5 min. Proteins were reduced with 1 µL of 1M dithiothreitol (DTT) at 70 ◦C for 15 min
and thereafter transferred to a 40 ◦C heating block for an additional 15 min, followed by
alkylation with 6 µL of 500 mM iodoacetamide (IAA) for 30 min at room temperature (RT)
in the dark. The proteins were digested on-bead using MagResynTM HILIC microparti-
cles (ReSyn Biosciences, Edenvale, South Africa) using an automated KingFisherTM Duo
(Thermo Fisher Scientific, Rockford, IL, USA), as previously described [16,17]. The peptides
were dried with a CentriVap vacuum concentrator (Labconco, Kansas City, MO, USA)
overnight and resuspended in 40 µL of 2% acetonitrile/0.2% formic acid, then they were
stored at −80 ◦C until LC–MS/MS analysis. Peptide quantification was performed using
the Pierce™ Quantitative Colorimetric Peptide Assay (Thermo Fisher Scientific, Waltham,
MA, USA). A pooled sample from 10 urine samples was prepared and analysed alongside
individual samples as a study-specific process control, as explained above. Additionally, a
commercial Hela digest system suitability control (SSC) was analysed.

4.5. Liquid Chromatography–Mass Spectrometric (LCMS) Analysis and Data Extraction

Digested peptides were analysed using an Evosep One LC system (Evosep ApS,
Odense, Denmark) coupled to a SCIEX TripleTOF 5600 tandem mass spectrometer (Sciex,
Framingham, MA, USA) in data-independent acquisition (DIA) mode. An Evosep perfor-
mance column (EV1112, 15 cm × 75 µm, 1.9 µm) was used for the Whisper 40SPD method.
The source settings of the Nanospray 3, which was equipped with a 20 µm Lotus emitter
(Fossil Ion Technologies, Valencia, Spain), were as follows: CUR-20, GS1-30, ISVF-2900.
Data were acquired using 48 MS/MS scans of overlapping sequential precursor isolation
windows (variable m/z isolation width, 1 m/z overlap, high sensitivity mode), with a
precursor MS scan for each cycle. The accumulation time was 50 ms for the MS1 scan (from
400 to 1100 m/z) and 30 ms for each product’s ion scan (200 to 1800 m/z) over a cycle time
of 1.53 s.

A spectral library was built with SpectronautTM 19 software (Biognosys Schlieren,
Schlieren, Switzerland) using the default settings with minor adjustments, including seg-
mented regression for retention time (iRT), a Trypsin digestion rule, and acceptance of
modified peptides with 3–6 intense fragments between 300 and 1800 m/z. This study-
specific spectral library was combined with an in-house generated urinary proteome
spectral library (using the Spectronaut™ “Search Archives” feature). Raw (. wiff) data files
were analysed using Spectronaut™ 19 with the default settings for analysis. These default
settings included the following: dynamic iRT retention time prediction with a correction
factor for window 1; mass calibration was set to local; decoy method was set as scrambled;
false discovery rate (FDR), according to the mProphet approach [50], was set at 1% on
the precursor, peptide, and protein group levels; protein inference was set to “default”,
which is based on the ID picker algorithm [51]; and global cross-run normalization on the
median was selected. The final urinary proteome spectral library (peptides—20,616, protein
groups—2604) was used as a reference for data extraction.

4.6. Statistical Analysis

The demographic and clinical characteristics were analysed using STATA 18SE (Stata
Corp, College Station, TX, USA). All the data were not normally distributed; therefore,
nonparametric tests were used, and a p-value < 0.05 was considered statistically signifi-
cant. Categorical and continuous data were analysed using the chi-square test/Fisher’s



Int. J. Mol. Sci. 2025, 26, 1740 15 of 18

exact test and the Kruskal–Wallis H test, respectively. Several nonparametric multivari-
ate analyses were performed. Firstly, principal component analysis (PCA, unsupervised)
was performed using the free web-based multivariate analysis tool Metaboanalyst v6.0
(https://www.metaboanalysts.ca/ (accessed on 20 May 2024)). To assess significant dif-
ferences in the differentially abundant proteins (DAP) between the three groups, the
Kruskal–Wallis H test, followed by post hoc analysis using Dunn’s test with a Bonferroni
adjustment, was applied using GraphPad Prism 10 (GraphPad Software, San Diego, CA,
USA). For this analysis, between-groups comparison was applied as follows: (1) Stage
G1 vs. Stage G3–G5 (group 1); (2) Stage G2 vs. Stage G3–G5 (group 2); and Stage G1 vs.
Stage G2 (group 3). Spearman’s correlation analysis between laboratory parameters and
proteomic data was performed using STATA 18SE with Bonferroni adjustments. Receiver
operating characteristic curves were constructed to predict the ability of selected proteins to
classify patient groups using Metaboanalyst v6.0. Pathways and Gene Ontology (GO) were
demonstrated using Enrichr/Enrichr-KG—https://maayanlab.cloud/Enrichr/—using the
Reactome library 2022 (accessed on 20 May 2024). The top enriched pathways (p < 0.05)
were selected.

5. Conclusions
In conclusion, we identified six urine proteins that were differentially abundant,

between 60–89 and ≥90, depending on eGFR stage. These proteins, when combined into a
six-protein model, showed that it could discriminate early CKD stages from late stages with
high predictive accuracy. This study provides evidence that several unique proteins are
involved in the early and late stages of CKD. It further suggests that a selected combination
of biomarkers could be used to stratify patients into different CKD stages. Bioinformatics
analysis highlighted the involvement of haemostasis and abnormalities in fibrin formation
pathways in CKD’s pathophysiology, possibly influencing the disease’s progression.
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20. Stańczykiewicz, B.; Łuc, M.; Banach, M.; Zabłocka, A. Cystatins: Unravelling the biological implications for neuroprotection.
Arch. Med. Sci. 2024, 20, 157–166. [CrossRef] [PubMed]

https://doi.org/10.1016/j.kint.2023.10.018
https://doi.org/10.1038/s41598-020-76773-0
https://doi.org/10.1093/ckj/sfae011
https://www.ncbi.nlm.nih.gov/pubmed/38313686
https://doi.org/10.1016/S2213-8587(20)30026-7
https://doi.org/10.1038/s41598-024-64833-8
https://www.ncbi.nlm.nih.gov/pubmed/38890379
https://doi.org/10.3390/proteomes11030025
https://www.ncbi.nlm.nih.gov/pubmed/37755704
https://doi.org/10.1371/journal.pone.0096955
https://doi.org/10.1074/mcp.RA120.002159
https://doi.org/10.2337/dc21-2204
https://doi.org/10.1093/ndt/gfw239
https://doi.org/10.1159/000488096
https://doi.org/10.1186/s12014-015-9092-7
https://www.ncbi.nlm.nih.gov/pubmed/26257595
https://doi.org/10.1038/s41598-020-77916-z
https://doi.org/10.3390/ijms18081702
https://doi.org/10.1016/j.cels.2016.02.015
https://doi.org/10.3390/biology13090680
https://www.ncbi.nlm.nih.gov/pubmed/39336107
https://doi.org/10.1186/s12014-024-09458-9
https://doi.org/10.7150/thno.62187
https://doi.org/10.1016/j.kint.2016.07.034
https://www.ncbi.nlm.nih.gov/pubmed/27742196
https://doi.org/10.5114/aoms/171706
https://www.ncbi.nlm.nih.gov/pubmed/38414464


Int. J. Mol. Sci. 2025, 26, 1740 17 of 18

21. Cocchiaro, P.; De Pasquale, V.; Della Morte, R.; Tafuri, S.; Avallone, L.; Pizard, A.; Moles, A.; Pavone, L.M. The Multifaceted Role
of the Lysosomal Protease Cathepsins in Kidney Disease. Front. Cell Dev. Biol. 2017, 5, 114. [CrossRef] [PubMed]

22. Jehle, P.M.; Ostertag, A.; Schulten, K.; Schulz, W.; Jehle, D.R.; Stracke, S.; Fiedler, R.; Deuber, H.J.; Keller, F.; Boehm, B.O.; et al.
Insulin-like growth factor system components in hyperparathyroidism and renal osteodystrophy. Kidney Int. 2000, 57, 423–436.
[CrossRef] [PubMed]

23. Wang, S.; Chi, K.; Wu, D.; Hong, Q. Insulin-Like Growth Factor Binding Proteins in Kidney Disease. Front. Pharmacol. 2021,
12, 807119. [CrossRef] [PubMed]

24. Guo, W.; Shao, F.; Sun, S.; Song, P.; Guo, L.; Xue, X.; Zhang, G.; Zhang, H.; Gao, Y.; Qiu, B.; et al. Loss of SUSD2 expression
correlates with poor prognosis in patients with surgically resected lung adenocarcinoma. J. Cancer 2020, 11, 1648–1656. [CrossRef]
[PubMed]

25. Cheng, Y.; Wang, X.; Wang, P.; Li, T.; Hu, F.; Liu, Q.; Yang, F.; Wang, J.; Xu, T.; Han, W. SUSD2 is frequently downregulated and
functions as a tumor suppressor in RCC and lung cancer. Tumor Biol. 2016, 37, 9919–9930. [CrossRef]

26. Watson, A.P.; Evans, R.L.; Egland, K.A. Multiple Functions of Sushi Domain Containing 2 (SUSD2) in Breast Tumorigenesis. Mol.
Cancer Res. 2013, 11, 74–85. [CrossRef] [PubMed]

27. Umeda, S.; Kanda, M.; Miwa, T.; Tanaka, H.; Tanaka, C.; Kobayashi, D.; Suenaga, M.; Hattori, N.; Hayashi, M.; Yamada, S.; et al.
Expression of sushi domain containing two reflects the malignant potential of gastric cancer. Cancer Med. 2018, 7, 5194–5204.
[CrossRef]

28. Sigdel, T.K.; Salomonis, N.; Nicora, C.D.; Ryu, S.; He, J.; Dinh, V.; Orton, D.J.; Moore, R.J.; Hsieh, S.-C.; Dai, H.; et al. The
Identification of Novel Potential Injury Mechanisms and Candidate Biomarkers in Renal Allograft Rejection by Quantitative
Proteomics. Mol. Cell. Proteom. 2014, 13, 621–631. [CrossRef] [PubMed]

29. Gu, X.; Yang, H.; Sheng, X.; Ko, Y.-A.; Qiu, C.; Park, J.; Huang, S.; Kember, R.; Judy, R.L.; Park, J.; et al. Kidney disease genetic
risk variants alter lysosomal beta-mannosidase ( MANBA ) expression and disease severity. Sci. Transl. Med. 2021, 13, eaaz1458.
[CrossRef] [PubMed]

30. Sreedharan, R.; Van Why, S.K. Heat shock proteins in the kidney. Pediatr. Nephrol. 2016, 31, 1561–1570. [CrossRef]
31. Chebotareva, N.; Bobkova, I.; Shilov, E. Heat shock proteins and kidney disease: Perspectives of HSP therapy. Cell Stress

Chaperones 2017, 22, 319–343. [CrossRef] [PubMed]
32. Heerspink, H.J.L.; Jongs, N.; Chertow, G.M.; Langkilde, A.M.; McMurray, J.J.V.; Correa-Rotter, R.; Rossing, P.; Sjöström, C.D.;

Stefansson, B.V.; Toto, R.D.; et al. Effect of dapagliflozin on the rate of decline in kidney function in patients with chronic kidney
disease with and without type 2 diabetes: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021, 9,
743–754. [CrossRef] [PubMed]

33. Li, J.; Niu, J.; Min, W.; Ai, J.; Lin, X.; Miao, J.; Zhou, S.; Liang, Y.; Chen, S.; Ren, Q.; et al. B7-1 mediates podocyte injury and
glomerulosclerosis through communication with Hsp90ab1-LRP5-β-catenin pathway. Cell Death Differ. 2022, 29, 2399–2416.
[CrossRef] [PubMed]

34. Tesauro, M.; Nisticò, S.; Noce, A.; Tarantino, A.; Marrone, G.; Costa, A.; Rovella, V.; Di Cola, G.; Campia, U.; Lauro, D.; et al. The
possible role of glutathione-S-transferase activity in diabetic nephropathy. Int. J. Immunopathol. Pharmacol. 2015, 28, 129–133.
[CrossRef] [PubMed]

35. Santangelo, F.; Witko-Sarsat, V.; Drueke, T.; Descamps-Latscha, B. Restoring glutathione as a therapeutic strategy in chronic
kidney disease. Nephrol. Dial. Transplant. 2004, 19, 1951–1955. [CrossRef]

36. Lv, W.; Booz, G.W.; Fan, F.; Wang, Y.; Roman, R.J. Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of
Novel Therapeutic Strategies. Front. Physiol. 2018, 9, 105. [CrossRef] [PubMed]

37. Espinosa-Díez, C.; Miguel, V.; Vallejo, S.; Sánchez, F.J.; Sandoval, E.; Blanco, E.; Cannata, P.; Peiró, C.; Sánchez-Ferrer, C.F.; Lamas,
S. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis. Redox Biol. 2018, 14, 88–99. [CrossRef]

38. Gaipov, A.; Makhammajanov, Z.; Dauyey, Z.; Markhametova, Z.; Mussina, K.; Nogaibayeva, A.; Kozina, L.; Auganova, D.;
Tarlykov, P.; Bukasov, R.; et al. Urinary Protein Profiling for Potential Biomarkers of Chronic Kidney Disease: A Pilot Study.
Diagnostics 2022, 12, 2583. [CrossRef]

39. Lutz, J.; Menke, J.; Sollinger, D.; Schinzel, H.; Thürmel, K. Haemostasis in chronic kidney disease. Nephrol. Dial. Transplant. 2014,
29, 29–40. [CrossRef] [PubMed]

40. Boccardo, P.; Remuzzi, G.; Galbusera, M. Platelet Dysfunction in Renal Failure. Semin. Thromb. Hemost. 2004, 30, 579–589.
[CrossRef]

41. Huang, H.-S.; Chang, H.-H. Platelets in inflammation and immune modulations: Functions beyond hemostasis. Arch. Immunol.
Ther. Exp. 2012, 60, 443–451. [CrossRef] [PubMed]

42. Gremmel, T.; Muller, M.; Steiner, S.; Seidinger, D.; Koppensteiner, R.; Kopp, C.W.; Panzer, S. Chronic kidney disease is associated
with increased platelet activation and poor response to antiplatelet therapy. Nephrol. Dial. Transplant. 2013, 28, 2116–2122.
[CrossRef] [PubMed]

https://doi.org/10.3389/fcell.2017.00114
https://www.ncbi.nlm.nih.gov/pubmed/29312937
https://doi.org/10.1046/j.1523-1755.2000.00862.x
https://www.ncbi.nlm.nih.gov/pubmed/10652019
https://doi.org/10.3389/fphar.2021.807119
https://www.ncbi.nlm.nih.gov/pubmed/35002740
https://doi.org/10.7150/jca.39319
https://www.ncbi.nlm.nih.gov/pubmed/32194777
https://doi.org/10.1007/s13277-015-4734-y
https://doi.org/10.1158/1541-7786.MCR-12-0501-T
https://www.ncbi.nlm.nih.gov/pubmed/23131994
https://doi.org/10.1002/cam4.1793
https://doi.org/10.1074/mcp.M113.030577
https://www.ncbi.nlm.nih.gov/pubmed/24335474
https://doi.org/10.1126/scitranslmed.aaz1458
https://www.ncbi.nlm.nih.gov/pubmed/33441424
https://doi.org/10.1007/s00467-015-3297-x
https://doi.org/10.1007/s12192-017-0790-0
https://www.ncbi.nlm.nih.gov/pubmed/28409327
https://doi.org/10.1016/S2213-8587(21)00242-4
https://www.ncbi.nlm.nih.gov/pubmed/34619108
https://doi.org/10.1038/s41418-022-01026-8
https://www.ncbi.nlm.nih.gov/pubmed/35710882
https://doi.org/10.1177/0394632015572564
https://www.ncbi.nlm.nih.gov/pubmed/25816416
https://doi.org/10.1093/ndt/gfh266
https://doi.org/10.3389/fphys.2018.00105
https://www.ncbi.nlm.nih.gov/pubmed/29503620
https://doi.org/10.1016/j.redox.2017.08.019
https://doi.org/10.3390/diagnostics12112583
https://doi.org/10.1093/ndt/gft209
https://www.ncbi.nlm.nih.gov/pubmed/24132242
https://doi.org/10.1055/s-2004-835678
https://doi.org/10.1007/s00005-012-0193-y
https://www.ncbi.nlm.nih.gov/pubmed/22940877
https://doi.org/10.1093/ndt/gft103
https://www.ncbi.nlm.nih.gov/pubmed/23729489


Int. J. Mol. Sci. 2025, 26, 1740 18 of 18

43. Pavlou, E.G.; Georgatzakou, H.T.; Fortis, S.P.; Tsante, K.A.; Tsantes, A.G.; Nomikou, E.G.; Kapota, A.I.; Petras, D.I.; Venetikou,
M.S.; Papageorgiou, E.G.; et al. Coagulation Abnormalities in Renal Pathology of Chronic Kidney Disease: The Interplay between
Blood Cells and Soluble Factors. Biomolecules 2021, 11, 1309. [CrossRef] [PubMed]

44. Huang, M.-J.; Wei, R.; Wang, Y.; Su, T.; Di, P.; Li, Q.; Yang, X.; Li, P.; Chen, X. Blood coagulation system in patients with chronic
kidney disease: A prospective observational study. BMJ Open 2017, 7, e014294. [CrossRef]

45. Xiao, M.; Tang, D.; Luan, S.; Hu, B.; Gong, W.; Pommer, W.; Dai, Y.; Yin, L. Dysregulated coagulation system links to inflammation
in diabetic kidney disease. Front. Clin. Diabetes Healthc. 2023, 4, 1270028. [CrossRef] [PubMed]

46. Kalyesubula, R.; Fabian, J.; Nakanga, W.; Newton, R.; Ssebunnya, B.; Prynn, J.; George, J.; Wade, A.N.; Seeley, J.; Nitsch, D.;
et al. How to estimate glomerular filtration rate in sub-Saharan Africa: Design and methods of the African Research into Kidney
Diseases (ARK) study. BMC Nephrol. 2020, 21, 20. [CrossRef] [PubMed]

47. Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright,
J.T.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood
Pressure. Hypertension 2003, 42, 1206–1252. [CrossRef] [PubMed]

48. Fabian, J.; Gondwe, M.; Mayindi, N.; Chipungu, S.; Khoza, B.; Gaylard, P.; Wade, A.N.; Gómez-Olivé, F.X.; Tomlinson, L.A.;
Ramsay, M.; et al. Chronic kidney disease (CKD) and associated risk in rural South Africa: A population-based cohort study.
Wellcome Open Res. 2022, 7, 236. [CrossRef] [PubMed]

49. George, J.A.; Brandenburg, J.-T.; Fabian, J.; Crowther, N.J.; Agongo, G.; Alberts, M.; Ali, S.; Asiki, G.; Boua, P.R.; Gómez-Olivé, F.X.;
et al. Kidney damage and associated risk factors in rural and urban sub-Saharan Africa (AWI-Gen): A cross-sectional population
study. Lancet Glob. Health 2019, 7, e1632–e1643. [CrossRef]

50. Reiter, L.; Rinner, O.; Picotti, P.; Hüttenhain, R.; Beck, M.; Brusniak, M.-Y.; Hengartner, M.O.; Aebersold, R. mProphet: Automated
data processing and statistical validation for large-scale SRM experiments. Nat. Methods 2011, 8, 430–435. [CrossRef]

51. Zhang, B.; Chambers, M.C.; Tabb, D.L. Proteomic Parsimony through Bipartite Graph Analysis Improves Accuracy and Trans-
parency. J. Proteome Res. 2007, 6, 3549–3557. [CrossRef] [PubMed]

52. Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.;
Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics
evidences. Nucleic Acids Res. 2022, 50, D543–D552. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/biom11091309
https://www.ncbi.nlm.nih.gov/pubmed/34572522
https://doi.org/10.1136/bmjopen-2016-014294
https://doi.org/10.3389/fcdhc.2023.1270028
https://www.ncbi.nlm.nih.gov/pubmed/38143793
https://doi.org/10.1186/s12882-020-1688-0
https://www.ncbi.nlm.nih.gov/pubmed/31941441
https://doi.org/10.1161/01.HYP.0000107251.49515.c2
https://www.ncbi.nlm.nih.gov/pubmed/14656957
https://doi.org/10.12688/wellcomeopenres.18016.2
https://www.ncbi.nlm.nih.gov/pubmed/36457874
https://doi.org/10.1016/S2214-109X(19)30443-7
https://doi.org/10.1038/nmeth.1584
https://doi.org/10.1021/pr070230d
https://www.ncbi.nlm.nih.gov/pubmed/17676885
https://doi.org/10.1093/nar/gkab1038
https://www.ncbi.nlm.nih.gov/pubmed/34723319

	Introduction 
	Results 
	Demographic and Clinical Characteristics 
	Performance of Study-Specific Suitability–Quality Control 
	Multivariate Analysis of Differential Abundant Proteins (DAPs) 
	Pathway and Network Analysis of Differentially Abundant Proteins 

	Discussion 
	Materials and Methods 
	Ethics Statement 
	Sample Selection 
	Clinical Laboratory Tests 
	Urine Protein Extraction 
	Liquid Chromatography–Mass Spectrometric (LCMS) Analysis and Data Extraction 
	Statistical Analysis 

	Conclusions 
	References

